#### Organisation du semestre :

Chapitre 3: Géométrie Vectorielle

Examen écrit (date à convenir - d'ici la mi-semestre) 50% de la note

Chapitre 4 : Probabilités et Statistiques (TP avec oral/rapport) 50% de la note.

#### **Chapitre 3: Géométrie Vectorielle**

Qu'est-ce qu'un vecteur?

- Direction
- Sens
- Longueur

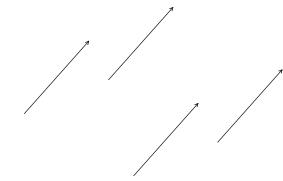
eur

Ponts is co kin de

Genève

Chenère

ATTENTION : la notion de vecteur ne dépend PAS de l'origine !!!



Tous ces vecteurs sont "EGAUX" CAR ils ont les mêmes SENS, DIRECTION et LONGEUR !!

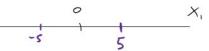
Notation : On note un <u>vecteur</u> à 2 dimensions comme  $\overrightarrow{V} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ 

Où  $\forall_1, \forall_2 \in \mathbb{R}$  et on dit que  $\overrightarrow{V} \in \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ 

Généralisation :  $\vec{V} \in \vec{\mathbb{N}}^{\mathbb{N}}$  un vecteur de dimension  $\mathbf{N} \in \vec{\mathbb{N}}^{\mathbb{N}}$ 

$$\overrightarrow{A} = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix}$$

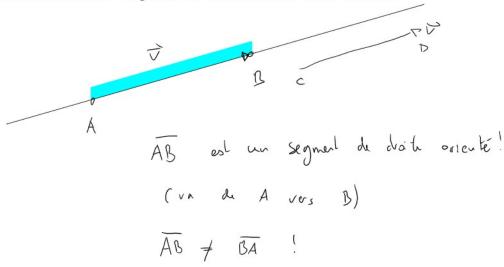
Cas particuliers : un vecteur de dimension 1 est appelé un "scalaire".



En fait, CHAQUE composante d'un vecteur à N dimensions est un SCALAIRE!

Pour les différencier un scalaire d'un vecteur, on écrira TOUJOURS un vecteur avec la flèche  $\overrightarrow{\mathbf{v}} \in \mathbb{R}^{^{\mathsf{N}}}$  et le scalaire sans flèche, souvent en utilisant une lettre grecque  $\mathbf{v} \in \mathbb{R}^{^{\mathsf{N}}}$ 

Il y a une différence entre "segment de droite orienté" et un vecteur.



Les deux points A et B définissent uniquement un (direction, sens ET la longueur).

La définition de "vecteur" englobe TOUS les segments de droite de même direction, sens et longueur au segment de droite  $\overline{AB}$ .

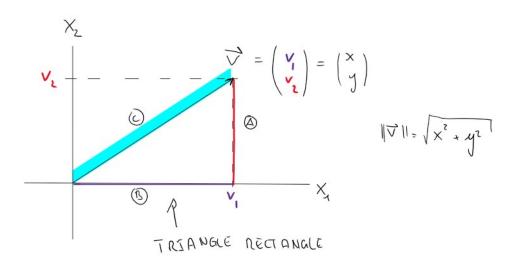
Le vecteur est UNIQUEMENT déterminé par

- Direction (droite)
- Sens
- Longueur, appelée aussi la **NORME** du vecteur, qui se note  $\|\vec{\nabla}\|$ .

# La norme d'un vecteur :

Comment la calcule-t-on ???  $\overrightarrow{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ 

$$\overrightarrow{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$



### Généralisation de la norme à N dimensions

#### **Proposition:** (Exercice)

Prouvez que la norme d'un vecteur vaut 0 <u>SI ET SEULEMENT SI</u> le vecteur est le vecteur

nul  $\overrightarrow{\bigcirc} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 





## PREUVE:

$$\Theta = 0$$
 $\Theta = 0$ 
 $\Theta = 0$ 
 $\Theta = 0$ 
 $\Theta = 0$ 

$$\Rightarrow \|\overrightarrow{x}\|^2 = (x_1)^2 + (x_2)^2$$

$$(x_i)^7 > 0$$
 Si  $x_i \neq 0$   
et  $(x_i)^7 = 0$  =  $0 \times 1 = 0$  } Tout nombre Non-Duc  
an cuiz et  $> 0$ 

I dem pan 
$$X_2$$
: Si  $X_2 = 0$  =0  $(x_2)^2 = 0$   
Sinan  $(x_2)^2 > 0$ 

$$(\|\vec{x}\|)^{2} = (x_{1})^{2} + (x_{2})^{2} > 0 \qquad \text{Si } x_{1} \text{ on } x_{2} \neq 0$$

$$x_{1} \neq 0 \qquad \text{Si } x_{3} \neq 0$$

Par consiquent 
$$Si(||X|||)^2 = 0$$
 on a foreign  $X_1 = X_2 = 0$ !  
 $= 0$   $X = {0 \choose 0}$  qui est le vecteur sul.

CQFD.